N

ARMY REesearcH LABORATORY

Reality Check on OpenMP
Implementations

by Shirley Moore, Daniel Pressel,
and Juan Carlos Chaves

ARL-TR-2718 April 2002

Approved for public release; distribution is unlimited.

20020514 127

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer's or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2718 April 2002

Reality Check on OpenMP
Implementations

Shirley Moore

University of Tennessee-Knoxville

Daniel Pressel
Computational and Information Sciences Directorate, ARL

Juan Carlos Chaves
HPTi/Major Shared Resource Center, ARL

Approved for public release; distribution is unlimited.

Abstract

OpenMP is a proposed industry standard Application Programmer Interface
(API) that supports shared-memory parallel programming in Fortran and C/C++
on architectures including Unix, Linux, and Windows NT platforms. This report
discusses experiences using OpenMP implementations on Shared Resource
Center (SRC) platforms. The experiences include running OpenMP benchmarks,
as well as using OpenMP with applications. Tools available for debugging and
analyzing OpenMP programs are also covered. Most of the results in this report
should be considered preliminary and the basis for further investigation.

Acknowledgments

This work was supported by the programming, education, and training (PET)
component of the Department of Defense (DOD) High Performance Computing
Modernization Program (HPCMP). Additional support was provided by the
U.S. Army Research Laboratory-Major Shared Resource Center (ARL-MSRC) and
the Common High Performance Computing Software Support Initiative (CHSSI).

This work was made possible through a grant of computing time from the DOD
HPCMP and the generous support of several of the Shared Resource Centers,
including the ARL-MSRC and the Distributed Center located at the Space and
Naval Warfare Systems Center.

INTENTIONALLY LEFT BLANK.

iv

Contents

Acknowledgments

List of Figures

1. Introduction

2. Benchmark Results

3. Lessons Learned

4. Tools for OpenMP

5. Conclusions and Future Work
6. References

Distribution List

Report Documentation Page

iii

vii

13

15

19

vi

INTENTIONALLY LEFT BLANK.

List of Figures

Figure 1. Scheduling overheads on an SGI Origin 3000 with the vendor

003041531 15 SOOI TSRS 6
Figure 2. Scheduling overheads on an SGI Origin 3000 with the Guide

COMPALET . cc.overiverusinerisrare s rses s ss sttt s s s 6
Figure 3. Scheduling overheads on a Sun E10000 with the vendor

03 1] 031 L5 SO PO 7
Figure 4. Scheduling overheads on a Sun E10000 with the Guide

COMAPILET....eocvmirrerncin s s s s s 7
Figure 5. Scheduling overheads on an IBM Power3 SMP with the vendor

103303071 15 SO UOUUUUT TR SRR 8
Figure 6. Synchronization overheads on an SGI Origin 3000 with the

VENAOT COMPIIET. ..ottt asses 8
Figure 7. Synchronization overheads on an SGI Origin 3000 with the

GUIAE COMPIIET......euiniitrnrerme ettt s sasars bbb 9
Figure 8. Synchronization overheads on a Sun E10000 with the vendor

COMPIIET...cuvvrrrrcrsnresses st s s s s s 9
Figure 9. Synchronization overheads on a Sun E10000 with the Guide

COMNPILET .. cereeeecarcrecesriseires bbb s s 10
Figure 10. Synchronization overheads on an IBM Power3 SMP with the

VENdOT COMPILET. c..cuuiuiuninirertertesissts sttt 10
Figure 11. PBN BT benchmark on an SGI Origin 3000 with the vendor

3103311571 13 SOOIV RTRTER SRS 11
Figure 12. PBN CG benchmark on an SGI Origin 3000 with the vendor

03 0 1] 631 13 SO OO PR IO 11
Figure 13. PBN LU benchmark on an SGI Origin 3000 with the vendor

003111 03115 SE OSSR 12
Figure 14. PBN SP benchmark on an SGI Origin 3000 with the vendor

COMPILET ..o ieiiniririrnrene st s s 12

vii

viii

INTENTIONALLY LEFT BLANK.

1. Introduction

OpenMP is a proposed industry standard Application Programmer Interface
(API) that supports shared-memory parallel programming in Fortran and C/C++
on architectures including Unix, Linux, and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors who
make up the OpenMP Architecture Review Board (ARB), OpenMP is intended
to give shared-memory parallel programmers a portable, scalable programming
model and simple interface for developing parallel applications for platforms
ranging from the desktop to the Supercomputer. (See reference [1] for more
information about OpenMP.) OpenMP compilers used here include the
following:

e SGI MIPSPro 7.3.1.1 Fortran 77 and Fortran 90 compilers on an SGI Origin
2000 and an SGI Origin 3000 running IRIX 6.5;

 IBM XL 7.1 Fortran 77/90/95 compilers on an IBM Power3 SMP with eight
processors per node running AIX 4.3;

* Sun Forte 6 update 1 Fortran 95 on a Sun HPC10000 running Solaris 8; and

e KAI Guide 3.9 Fortran 77 and Fortran 90 compilers on SGI, IBM, and Sun
platforms.

2. Benchmark Results

The EPCC OpenMP microbenchmarks are intended to measure the overheads of
synchronization and loop scheduling in the OpenMP run-time library [2]. The
overhead measurements can be used to compare the efficiency of the run-time
libraries of different OpenMP implementations and give guidance on the
performance implications of choosing between semantically equivalent directives
(e.g., CRITICAL vs. ATOMIC vs. lock routines). Much of these benchmarks
address the barrier implementations in OpenMP. However, the overhead itself
may not be an indication of how well an individual OpenMP program will
perform. An application program will use a whole ensemble of directives, and its
performance cannot be predicted on the basis of certain directives alone.
However, these benchmarks are meant to give some guidance on choosing
directives to the application programmer and give indications to the vendors as
to where improvement in their OpenMP implementations may be needed. A
detailed explanation of the measurement methodology can be found in
reference [2]. A brief explanation is given in this report as follows. The overhead

of a parallel program is defined as Tp-Ts/p, where Tp is the parallel execution
time, Ts the serial execution time, and p is the processor count. The overheads of
a number of directives are measured in this simple fashion. Overheads are
reported in processor clock cycles to allow comparison between different
systems.

The loop scheduling benchmark measures overheads for STATIC, DYNAMIC,
and GUIDED schedules with different chunk sizes. Results for the Sun E10000,
SGI Origin 3000, and IBM Power3 SMP for both vendor and KAI Guide
compilers (where possible) are shown in Figures 1 through 5. From these
figures, it can be seen that dynamic scheduling is expensive, especially for small
chunk sizes. Since the default chunk size is 1 for most OpenMP
implementations, users need to be careful to set the chunk size to a larger value
when using dynamic scheduling. On the Origin, the overheads of dynamic
scheduling are so large as to render it useless, at least with the default setup.

The synchronization benchmark measures synchronization overheads for several
barrier types of directives: parallel, for, parallel for, barrier, and single. The
overheads of each of the operations are measured for different numbers of
threads. Results for the Sun E10000, SGI Origin 3000, and IBM Power3 SMP for
both vendor and KAI Guide compilers (where possible) are shown in Figures 6
through 10.

The PBN, or “Programming Baseline for NPB,” consists of three sets of source
codes based on the NASA Advanced Super (NAS) Computing Division Parallel
Benchmark version 23. The PBN contains an improved sequential
implementation, a sample OpenMP implementation, and a sample HPF
implementation. The directives inserted for the OpenMP implementation reflect
a programmer’s parallelization and data distribution strategy, while the compiler
is responsible for implementation and optimization. These benchmarks
complement the EPCC benchmarks by providing application-oriented
performance measures. Each application in the benchmark has three problem
sizes, which are simply called A, B, and C, where C is the largest problem. We
looked at the Mflop rate for each problem set as a function of the number of
processors. The OpenMP version of the PBN benchmarks has been rewritten by
the Real World Computing Program (RWCP)/Omni group in Japan to eliminate
some problems. We have not been able to run all size C problems on all of the
platforms due to memory limitations and occasional segmentation faults. We
will follow up on these problems. Some preliminary results for the Origin 3000
are shown in Figures 11 through 14. These are with STATIC scheduling and the
default chunk size. The OpenMP versions of most of the benchmarks appear to
scale well for larger problem sizes, although the results shown here are
somewhat noisy. We plan to rerun these benchmarks to try to achieve more
reliable results and to compare scaling with the (message-passing interface)
versions.

3. Lessons Learned

OpenMP private variables are allocated on a thread’s stack. The default
stack size may not be large enough for parallel regions with large numbers
of private variables or regions that call subroutines with large numbers of
local variables which are automatically private. Segmentation faults are a
frequent consequence of using a stack size that is too small. Both
environment variables and run-time routines may be used to modify the
default stack size, although the manner in which this is done is
implementation dependent. On the Origin 3000 with the MIPSpro
compiler, setting the MP_STACK_OVERFLOW environment variable
causes the OpenMP run-time system to automatically detect and report
stack overflow errors at run-time. The MP_SLAVE_STACKSIZE variable
or the MP_SET_SLAVE_STACKSIZE library routine can be used to request
larger stack sizes. Similar facilities are available with some other OpenMP
compilers (e.g., KMP_STACKSIZE with Guide).

Hewlet-Packard currently does not support OpenMP for C. Its support of
OpenMP for Fortran is incomplete and less than perfect. In particular, its
error messages are extremely poor and generally only state that an internal
error has occurred. This behavior insinuates that the compiler is broken
when, in fact, it could be a bug in the application code.

Two examples of these problems are the following:

(1) HP Fortran 77 and Fortran 90 support a limited number of continuation
lines. Since the limitation applies to compiler directives as well, a
problem can arise if there are a large number of private variables.
Unfortunately, rather than stating what the problem is, the compiler
just gives the internal error message.

(2) The compiler did not seem to work well with code generated by a KAI
tool that converted SGI directives to OpenMP. When it was specified
that variables should default to SHARED, matters improved. Most of
the error messages disappeared, and the job seemed to run correctly.

On IBM systems, there is a problem that if an OpenMP job tries to use all of
the processors, then it is competing with the operating system for the
attention of a processor. OpenMP jobs tend to be relatively fine-grained;
thus, if the operating system needs 5% of a processor’s attention, then the
other processors will spend 5% of their time spinning while waiting for the
last thread to catch up. Obviously, the problem gets worse as the number
of processors in the system increases because the number of processors
sitting at a spin lock increases, while the amount of time required by the

operating system can also increase. On the IBM SP, problems are even
worse, such as the following:

(1) When performing mixed-mode programming with MPI going between
nodes, servicing MPI requests from other processors will also require
the attention of a processor, slowing things down even more.

(2) Asynchronous transfer of data between nodes can also put a strain on
the memory system, which, in the case of some configurations, is
already stretched fairly thin.

KAI’s implementation of OpenMP is based on Pthreads. As such, it should
add extra overhead relative to a native implementation. However, our
benchmark results so far do not show this to be a problem, and sometimes
the KAI compiler outperforms the vendor compiler.

4. Tools for OpenMP

The TotalView debugger from Etnus provides facilities for debugging OpenMP
programs as well as for mixed MPI and OpenMP programs [3]. TotalView is
available for a large number of platforms and is installed on some
Shared Resource Center (SRC) machines. The previous version (4.1) had some
problems debugging threaded programs (such as OpenMP) on some platforms
(such as SGI), but this problem appears to have been fixed in version 5.
TotalView works with both vendor and KAI OpenMP compilers.

The KAI KAPPro toolset includes the Guide compiler, the Assure debugger, and

the GuideView performance analysis tool for OpenMP, which are described as
follows:

Guide is a cross-platform implementation of OpenMP for C, C++, and
Fortran.

The Assure component of the KAP/Pro toolset validates the correctness of
parallel OpenMP programs and identifies programming errors that
occurred when parallelizing a sequential application. The inputs to Assure
are an OpenMP parallel program that is assumed to run correctly in
sequential mode and a data set for that program. When the Assure-
processed program is run, Assure simulates parallel execution and
identifies errors where the parallel program is inconsistent with the
corresponding sequential program. Assure can display its results using the
AssureView graphical user interface or a command-line interface.

* The GuideView component provides an instrumented run-time library that

captures timing information for detecting and diagnosing performance

problems in OpenMP parallel programs. The graphical interface provides
browsing through performance data to identify parallel regions or loops
that require attention.

Performance Application Programming Interface (PAPI) is a specification and
reference implementation of a cross-platform library interface to hardware
counters [4, 5]. These counters exist as a small set of registers that count
“events,” which are occurrences of specific signals, and states related to the
processor’s function. Monitoring these events facilitates correlation between the
structure of source/object code and the efficiency of the mapping of that code to
the underlying architecture. This correlation has a variety of uses in performance
analysis and tuning. PAPI virtualizes the counters on a per-process and per--
thread basis and can be used for analysis of threaded programs including
OpenMP. PAPI is being installed on some SRC machines.

Vampir is a performance analysis tool for MPI parallel programs developed by
Pallas in Germany. Vampir is available on some SRC machines. The next
version of VAMPIR will support OpenMP in addition to MPL. Pallas and
Intel/KALI are developing a new performance analysis toolset for combined MPI
and OpenMP programming which uses PAPI to access the hardware
performance counters. PAPI's standard performance metrics, which include
metrics for shared memory processors (SMPs), will provide accurate and
relevant performance data for the clustered SMP environments targeted by the
new tool set.

5. Conclusions and Future Work

OpenMP implementations have matured and will continue to do so.
Implementations of OpenMP 2.0 for Fortran will hopefully begin to appear soon.
OpenMP is becoming a viable option for scalable parallel programming on
shared-memory platforms. We plan to continue our benchmarking work and
will investigate possible solutions to performance problems encountered on
various platforms.

For example, when using the C$doacross directives on SGI, sometimes the
optimal solution is to specify INTERLEAVE, which is equivalent to STATIC
scheduling with a CHUNK SIZE of 1. Alternatively, sometimes the optimal
solution will be to specify STATIC and let the CHUNK SIZE default. In this case,
the default is not 1, rather it is the largest CHUNK SIZE that will result in a
uniform distribution of work among the processors (within the limitations of
integer division). We plan to investigate use of this optimization with the EPCC
scheduling benchmark.

SGI Origin 3000, 400 MHz, MIPSPro 90,
8 threads

10000000
1000000
100000
10000
1000

[
"u'ﬂi‘ﬂ-~

B

—

——e

—&—static, n
— - - dynamic, n
- A=~ guided,n

100
10

1 1 I I t i T I

1 2 4 8 16 32 64 128
Chunk Size

Overhead (clock cycles)

Figure 1. Scheduling overheads on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000, 400 MHz, MIPSPro 90,

8 threads

% 10000000 T—
5 1000000 1=y o
-ﬁ 100000 B —&—static,n
-3 10000 T—o=—= — — - - dynamic, n
= 1000 = A= guided,n
g 100
e 10
»
O 1 1 1] I I I I

1 2 4 8 16 32 64 128

Chunk Size

Figure 2. Scheduling overheads on an SGI Origin 3000 with the Guide compiler.

10000000
’@ 1000000 - -
% 100000 &2 'A"Th
.§ 10000 -——*ﬁ%— T staticn
3 ‘ —#— dynamic,n
R 1000 B
Q
g 100
) 10

1 T ! ' ' ‘ I

Overhead (clock cycles)

Sun E10000, 400 MHz, Sun Forte f95, 8 threads

1

2

4

8 16 32 64 128

Chunk size

Figure 3. Scheduling overheads on a Sun E10000 with the vendor compiler.

Sun E10000, 400 MHz, Guide 3.9 (guidef90),

1000000 -

8 threads

100000

10000

=0 W | |—¢—static,n

1000

= dynamic,n
--4-- guided,n

100

10

1

1

2

4

8§ 16 32 64 128

Chunk size

Figure 4. Scheduling overheads on a Sun E10000 with the Guide compiler.

IBM Power3 SMP, 375 MHz, x1f90_r, 4 threads

10000000
o~
§ 1000000
4
5 100000 -
% ,
S 10000 sl static,n
E =l == dynamic,n
"g 1000 = 9 = guided,n
v
£ 100
4
@) 10

1 T L) L] L]] 4 Ll

1 2 4 8 16 32 64 128

Chunk size

Figure 5. Scheduling overheads on an IBM Power3 SMP with the vendor compiler.

SGI Origin 3000, 400 MHz, MIPSpro 90

g 14100 > 7&—

S 12100 ; o

; 16100 7 ~—&—Parallel

§ 8100 l' ——Do

c) - @ Parallel Do
'§ 6100 —®- ‘Barrier

= 4100 - —X= 'Single

§ 2100 ﬂ’{/‘/

© 100 - — T T T T T T

1 2 3 4 5 6 7 8

Number of threads

Figure 6. Synchronization overheads on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000, 400 MHz, Guide 3.9 (guidef90)

50000

45000

40000

35000

30000

25000

20000

15000

— 4;/7"

10000
5000 T——=

Overhead (clock cycles)

0 -

1

PR N _./v-"-x

-

N 4

_.qﬁi;l-l-

}__

2 3 4

6 7 8

Number of threads

= Parallel
——Do

Parallel Do
—@- 'Barrier
—K

*Single

Figure 7. Synchronization overheads on an SGI Origin 3000 with the Guide compiler.

Sun E10000, 400 MHz, Sun Forte f95

- 35000

i 30000 M— ——4— Parallel
© 25000 —&—Do

4

§ 20000 / Parallel Do
A 15000 / —&- ‘Barrier
R / =X= ‘Single
E 10000 — i

£ e

S 5000 gt

o 0 - e

5

6 7 8

Number of threads

Figure 8. Synchronization overheads on a Sun E10000 with the vendor compiler.

Sun E10000, 400 MHz, Guide 3.9 (guide f90)

11000
10000 —

3888 — ~—&— Parallel

: ; X —#—Do
7000 — /
6000 — —K © Parallel Do
5000 7 7. .
4000 g 7 . ~—&- ‘Barrier
3000 — < .
ﬁ—*——-‘—

1]] 1 L

—X= ‘Single

2000 +— .
1000 +———g——lt= “
0 -_rl T T

Overhead (clock cycles)

1 2 3 4 5 6 7 8

Number of threads

Figure 9. Synchronization overheads on a Sun E10000 with the Guide compiler.

IBM Power3 SMP, 375 MHz, x1f90_r

’é\ 350000

> 300000 —— Paralld
< 250000 =i~ Do

% 200000 Parallel Do
:; 150000 —®- ‘Barrier
S 100000 —X" ‘Single

§ 50000

o 0 -

1 2 3 4 5 6 7 8

Number of threads

Figure 10. Synchronization overheads on an IBM Power3 SMP with the vendor compiler.

10

SGI Origin 3000, 400 MHz, MIPSpro f77

19500

18000

16500

15000

13500

—<4—BT A

12000

—#—BTB

10500

9000
7500

MFlops/s

= A= BTC

6000

4500

3000
1500 -

0

8 16

32

64

Number of Threads

128

Figure 11. PBN BT benchmark on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000, 400 MHz, MIPSpro £77

2400
2100 -y
" 1800 vy a T
\a 1500 A 7
= 1200
RN
300 L " ar P L
0 A —Ir‘sﬁ/ lm ﬂ 1 1 1
4 8 16 32 64 128
Number of threads

—o—CGA
—#—CGB
= A= CGC

Figure 12. PBN CG benchmark on an SGI Origin 3000 with the vendor compiler.

11

12

SGI Origin 3000, 400MHz, MIPSpro 77

10000

9000

8000 — A
= 2333 : ——LUA
=9 -
S 5000 Pé/& —m—LUB

4000 5 7 - 4= LUC
E 3000 e va

2000 -

1000 _W :{

0 | 1 | 1 I
4 8 16 32 64 128

Number of threads

Figure 13. PBN LU benchmark on an SGI Origin 3000 with the vendor compiler.

SGI Origin 3000, 400MHz, MIPSPro {77

5500

Al
5000
4500 4

4000
3500 ll{\ AN

7) -~—4—SP A
2300 | —a—sr B

2000 —otf - A= SPC

MFlops/s

1500 T

/
1000 -
500 —F= "

Number of threads

Figure 14. PBN SP benchmark on an SGI Origin 3000 with the vendor compiler.

References

OpenMP website. <http://www.openmp.org/>.

Bull, M. J. “Measuring Synchronization and Scheduling Overheads on
OpenMP.” Proceedings of the First European Workshop on OpenMP
(EWOMP '99), Lund, Sweden, 1999.

Browne, S., and]. Cownie. “OpenMP Debugging With TotalView.”
Proceedings of the Workshop on OpenMP Applications and Tools, July 2000.

Browne, S., J. J. Dongarra, N. Garner, G. Ho, and P. Mucci. “A Portable
Programming Interface for Performance Evaluation on Modern Processors.”
International Journal of High Performance Computing Applications, vol. 14, no. 3,
pp- 189-204, 2000.

Browne, S., J. J. Dongarra, N. Garner, K. London, and P. Mucci. “A Scalable
Cross-Platform Infrastructure for Application Performance Optimization
Using Hardware Counters.” Proceedings of SC'2000, Dallas, TX, November

2000.

13

14

INTENTIONALLY LEFT BLANK.

NO. OF
COPIES

ORGANIZATION

2

DEFENSE TECHNICAL

- INFORMATION CENTER

DTIC OCA

8725 JOHN J KINGMAN RD
STE 0944

FT BELVOIR VA 22060-6218

HQDA

DAMO FDT

400 ARMY PENTAGON
WASHINGTON DC 20310-0460

OSD
OUSD(A&T)/ ODDR&E(R)

DR R J TREW

3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

COMMANDING GENERAL
US ARMY MATERIEL CMD
AMCRDATF

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN

3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

US MILITARY ACADEMY
MATH SCI CTR EXCELLENCE
MADN MATH

THAYER HALL

WEST POINT NY 10996-1786

DIRECTOR

US ARMY RESEARCH LAB
AMSRLD

DR D SMITH

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LAB
AMSRL CTAIR

2800 POWDER MILL RD
ADELPHI MD 20783-1197

NO. OF
COPIES ORGANIZATION

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRLCIIST
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

2 DIR USARL
AMSRL CI LP (BLDG 305)

15

NO. OF
COPIES ORGANIZATION

1 HPCMO
CHENRY
PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
L DAVIS
DPTY PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
V THOMAS
DISTRIB CTRS PR]JT OFCR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
] BAIRD
HPC CTRS PRJT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
L PERKINS
CHSSI PR]T MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 RICE UNIVERSITY
M BEHR
MECHL ENGNRG MTRLS SCI
6100 MAIN ST MS 321
HOUSTON TX 77005

1 RICE UNIVERSITY
TTEZDUYAR
MECL ENGRG MTRLS SCI
6100 MAIN ST MS 321
HOUSTON TX 77005

1 J OSBURN
CODE 5594
4555 OVERLOOK RD
BLDG A49RM 15
WASHINGTON DC 20375-5340

16

NO. OF
COPIES ORGANIZATION

1 NAVALRSRCHLAB
J BORIS
CODE 6400
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 NAVAL RSRCH LAB
D PAPACONSTANTOPOULOS
CODE 6390
WASHINGTON DC 20375-5000

1 NAVAL RSRCH LAB
G HEBURN
RSRCH OCNGRPHR CNMOC
BLDG 1020 RM 178
STENNIS SPACE CTR MS 39529

1 AIR FORCE RSRCH LAB DEHE
R PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

1 AIR FORCE RSRCH LAB
INFO DIRCTRT
R W LINDERMAN
26 ELECTRONIC PKWY
ROME NY 134414514

1 R A WASILAUSKY
SPAWARSYSCEN D4402
BLDG 33 RM 0071A
53560 HULL ST
SAN DIEGO CA 92152-5001

1 USAE WIRWYS EXPRMNT STA
CEWESHV C
JPHOLLAND
3909 HALLS FERRY RD
VICKSBURG MS 39180-6199

1 USA CECOM RDEC
AMSEL RD C2
B SPERLMAN
FT MONMOUTH NJ 07703

1 SPACE AND NVL WRFR SYS CTR
K BROMLEY
CODE D7305 BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

NO. OF

COPIES ORGANIZATION

3

USA HPCRC

B BRYAN

PMUZIO

V KUMAR

1200 WASHINGTON AVE

S MINNEAPOLIS MN 55415

USA HPCRC

GV CANDLER

1200 WASHINGTON AVE

S MINNEAPOLIS MN 55415

NCCOSC

L PARNELL

NCCOSC RDTE DIV D3603
49490 LASSING RD

SAN DIEGO CA 92152-6148

UNIVERSITY OF TENNESSEE

S MOORE

INNOVATIVE COMPUTER LAB
1122 VOLUNTEER BLVD STE 203
KNOXVILLE TN 37996-3450

SDSC UNIV OF CA SAN DIEGO
A SNAVELY

9500 GILMAN DR

LA JOLLA CA 92093-0505

NCSA

152 CAB

S SAARINEN

605 E SPRINGFIELD AVE
CHAMPAIGN IL 61820

USA ERDC

D DUFFY

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CIR
VICKSBURG MS 39180

USA ERDC

JHENSLEY

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

MFAHEY

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

NO. OF
COPIES ORGANIZATION

1

20

USA ERDC

T OPPE

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

W WARD

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

RALTER

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

ABERDEEN PROVING GROUND

DIR USARL
AMSRL CI

N RADHAKRISHNAN
AMSRL CIH

CNIETUBICZ

S THOMPSON
AMSRL CIHC

P CHUNG

JCLARKE

D GROVE

D HISLEY

M HURLEY

AMARK

D PRESSEL

R NAMBURU

D SHIRES

RVALISETTY

CZOLTANI
AMSRL CI HI

A PRESSLEY
AMSRL CI HS

D BROWN

T KENDALL

P MATTHEWS

KSMITH

RPRABHAKARAN

17

18

INTENTIONALLY LEFT BLANK.

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

ge 1 hour per response, including the time for ing i i i isting data
gathenng and rnamtammg the datz needed, and ing and reviewing the 01 mformanon Send comments regarding thus burden estimate or any othsr aspect of this
of i ions for this burden to Services, Di and Reports, 1215 Jefferson

i for
Davis Highway, Suite 1204, Arlington VA _22202-4302, and to the Office of Management and Budaget, Paperwork Reduction Pro]ecqoma.msa)‘ Washington, DC 20503,

Public reporting burden for this ion of is to

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 2002

1 Oct 2000-1 Jun 2001

4. TITLE AND SUBTITLE

Reality Check on OpenMP Implementations

5. FUNDING NUMBERS
665803.731

6. AUTHOR(S)

Shirley Moore, - Daniel Pressel, and Juan Carlos Chaves !

ATTN: AMSRL-CI-HC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2718

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

* University of Tennessee, Knoxville, TN 37996
! HPTi/Major Shared Resource Center, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005

12b. DISTRIBUTION CODE

13. ABST_F!TCT(Maximum 200 words)
OpenMP is a proposed industry standard Application Programmer Interface (API) that supports shared-memory parallel
programming in Fortran and C/C++ on architectures including Unix, Linux, and Windows NT platforms. This report
discusses experiences using OpenMP implementations on Shared Resource Center (SRC) platforms. The experiences
include running OpenMP benchmarks, as well as using OpenMP with applications. Tools available for debugging and
analyzing OpenMP programs are also covered. Most of the results in this report should be considered preliminary and
the basis for further investigation.

14. SUBJECT TERMS

benchmarking, OpenMP, supercomputing

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

15. NUMBER OF PAGES
22

16. PRICE CODE

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT
UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
19 Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

20

